passt/util.c

756 lines
17 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/* PASST - Plug A Simple Socket Transport
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* for qemu/UNIX domain socket mode
*
* PASTA - Pack A Subtle Tap Abstraction
* for network namespace/tap device mode
*
* util.c - Convenience helpers
*
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* Copyright (c) 2020-2021 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*/
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
#include <sched.h>
#include <stdio.h>
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
#include <stdlib.h>
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include <unistd.h>
#include <arpa/inet.h>
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include <net/ethernet.h>
#include <sys/epoll.h>
#include <sys/uio.h>
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
#include <fcntl.h>
#include <string.h>
#include <time.h>
#include <errno.h>
#include <stdbool.h>
#include <linux/errqueue.h>
#include <getopt.h>
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
#include "util.h"
#include "iov.h"
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
#include "passt.h"
#include "packet.h"
#include "log.h"
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* sock_l4_sa() - Create and bind socket to socket address, add to epoll list
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* @c: Execution context
* @type: epoll type
* @sa: Socket address to bind to
* @sl: Length of @sa
* @ifname: Interface for binding, NULL for any
* @v6only: Set IPV6_V6ONLY socket option
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* @data: epoll reference portion for protocol handlers
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* Return: newly created socket, negative error code on failure
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
int sock_l4_sa(const struct ctx *c, enum epoll_type type,
const void *sa, socklen_t sl,
const char *ifname, bool v6only, uint32_t data)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
sa_family_t af = ((const struct sockaddr *)sa)->sa_family;
union epoll_ref ref = { .type = type, .data = data };
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
struct epoll_event ev;
int fd, y = 1, ret;
uint8_t proto;
int socktype;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
switch (type) {
case EPOLL_TYPE_TCP_LISTEN:
proto = IPPROTO_TCP;
socktype = SOCK_STREAM | SOCK_NONBLOCK;
break;
case EPOLL_TYPE_UDP_LISTEN:
case EPOLL_TYPE_UDP_REPLY:
proto = IPPROTO_UDP;
socktype = SOCK_DGRAM | SOCK_NONBLOCK;
break;
case EPOLL_TYPE_PING:
if (af == AF_INET)
proto = IPPROTO_ICMP;
else
proto = IPPROTO_ICMPV6;
socktype = SOCK_DGRAM | SOCK_NONBLOCK;
break;
default:
ASSERT(0);
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
fd = socket(af, socktype, proto);
ret = -errno;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (fd < 0) {
warn("L4 socket: %s", strerror(-ret));
return ret;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
if (fd > FD_REF_MAX) {
close(fd);
return -EBADF;
}
ref.fd = fd;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (v6only)
if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &y, sizeof(y)))
debug("Failed to set IPV6_V6ONLY on socket %i", fd);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &y, sizeof(y)))
debug("Failed to set SO_REUSEADDR on socket %i", fd);
if (proto == IPPROTO_UDP) {
int level = af == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
int opt = af == AF_INET ? IP_RECVERR : IPV6_RECVERR;
if (setsockopt(fd, level, opt, &y, sizeof(y)))
die_perror("Failed to set RECVERR on socket %i", fd);
}
if (ifname && *ifname) {
/* Supported since kernel version 5.7, commit c427bfec18f2
* ("net: core: enable SO_BINDTODEVICE for non-root users"). If
* it's unsupported, don't bind the socket at all, because the
* user might rely on this to filter incoming connections.
*/
if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE,
ifname, strlen(ifname))) {
char str[SOCKADDR_STRLEN];
ret = -errno;
warn("Can't bind %s socket for %s to %s, closing",
EPOLL_TYPE_STR(proto),
sockaddr_ntop(sa, str, sizeof(str)), ifname);
close(fd);
return ret;
}
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (bind(fd, sa, sl) < 0) {
/* We'll fail to bind to low ports if we don't have enough
* capabilities, and we'll fail to bind on already bound ports,
* this is fine. This might also fail for ICMP because of a
* broken SELinux policy, see icmp_tap_handler().
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
if (type != EPOLL_TYPE_PING) {
ret = -errno;
close(fd);
return ret;
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
if (type == EPOLL_TYPE_TCP_LISTEN && listen(fd, 128) < 0) {
ret = -errno;
warn("TCP socket listen: %s", strerror(-ret));
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
close(fd);
return ret;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
ev.events = EPOLLIN;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
ev.data.u64 = ref.u64;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (epoll_ctl(c->epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) {
ret = -errno;
warn("L4 epoll_ctl: %s", strerror(-ret));
return ret;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
return fd;
}
/**
* sock_l4() - Create and bind socket for given L4, add to epoll list
* @c: Execution context
* @af: Address family, AF_INET or AF_INET6
* @type: epoll type
* @bind_addr: Address for binding, NULL for any
* @ifname: Interface for binding, NULL for any
* @port: Port, host order
* @data: epoll reference portion for protocol handlers
*
* Return: newly created socket, negative error code on failure
*/
int sock_l4(const struct ctx *c, sa_family_t af, enum epoll_type type,
const void *bind_addr, const char *ifname, uint16_t port,
uint32_t data)
{
switch (af) {
case AF_INET: {
struct sockaddr_in addr4 = {
.sin_family = AF_INET,
.sin_port = htons(port),
{ 0 }, { 0 },
};
if (bind_addr)
addr4.sin_addr = *(struct in_addr *)bind_addr;
return sock_l4_sa(c, type, &addr4, sizeof(addr4), ifname,
false, data);
}
case AF_UNSPEC:
if (!DUAL_STACK_SOCKETS || bind_addr)
return -EINVAL;
/* fallthrough */
case AF_INET6: {
struct sockaddr_in6 addr6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(port),
0, IN6ADDR_ANY_INIT, 0,
};
if (bind_addr) {
addr6.sin6_addr = *(struct in6_addr *)bind_addr;
if (IN6_IS_ADDR_LINKLOCAL(bind_addr))
addr6.sin6_scope_id = c->ifi6;
}
return sock_l4_sa(c, type, &addr6, sizeof(addr6), ifname,
af == AF_INET6, data);
}
default:
return -EINVAL;
}
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* sock_probe_mem() - Check if setting high SO_SNDBUF and SO_RCVBUF is allowed
* @c: Execution context
*/
void sock_probe_mem(struct ctx *c)
{
int v = INT_MAX / 2, s;
socklen_t sl;
if ((s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0) {
c->low_wmem = c->low_rmem = 1;
return;
}
sl = sizeof(v);
if (setsockopt(s, SOL_SOCKET, SO_SNDBUF, &v, sizeof(v)) ||
getsockopt(s, SOL_SOCKET, SO_SNDBUF, &v, &sl) ||
(size_t)v < SNDBUF_BIG)
c->low_wmem = 1;
v = INT_MAX / 2;
if (setsockopt(s, SOL_SOCKET, SO_RCVBUF, &v, sizeof(v)) ||
getsockopt(s, SOL_SOCKET, SO_RCVBUF, &v, &sl) ||
(size_t)v < RCVBUF_BIG)
c->low_rmem = 1;
close(s);
}
/**
* timespec_diff_us() - Report difference in microseconds between two timestamps
* @a: Minuend timestamp
* @b: Subtrahend timestamp
*
* Return: difference in microseconds (wraps after 2^63 / 10^6s ~= 292k years)
*/
int64_t timespec_diff_us(const struct timespec *a, const struct timespec *b)
{
if (a->tv_nsec < b->tv_nsec) {
return (b->tv_nsec - a->tv_nsec) / 1000 +
(a->tv_sec - b->tv_sec - 1) * 1000000;
}
return (a->tv_nsec - b->tv_nsec) / 1000 +
(a->tv_sec - b->tv_sec) * 1000000;
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* timespec_diff_ms() - Report difference in milliseconds between two timestamps
* @a: Minuend timestamp
* @b: Subtrahend timestamp
*
* Return: difference in milliseconds
*/
long timespec_diff_ms(const struct timespec *a, const struct timespec *b)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
return timespec_diff_us(a, b) / 1000;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
/**
* bitmap_set() - Set single bit in bitmap
* @map: Pointer to bitmap
* @bit: Bit number to set
*/
void bitmap_set(uint8_t *map, unsigned bit)
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
{
unsigned long *word = (unsigned long *)map + BITMAP_WORD(bit);
*word |= BITMAP_BIT(bit);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
}
/**
* bitmap_clear() - Clear single bit in bitmap
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* @map: Pointer to bitmap
* @bit: Bit number to clear
*/
void bitmap_clear(uint8_t *map, unsigned bit)
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
{
unsigned long *word = (unsigned long *)map + BITMAP_WORD(bit);
*word &= ~BITMAP_BIT(bit);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
}
/**
* bitmap_isset() - Check for set bit in bitmap
* @map: Pointer to bitmap
* @bit: Bit number to check
*
* Return: true if given bit is set, false if it's not
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
*/
bool bitmap_isset(const uint8_t *map, unsigned bit)
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
{
const unsigned long *word
= (const unsigned long *)map + BITMAP_WORD(bit);
return !!(*word & BITMAP_BIT(bit));
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
}
port_fwd, util: Don't bind UDP ports with opposite-side bound TCP ports When pasta periodically scans bound ports and binds them on the other side in order to forward traffic, we bind UDP ports for corresponding TCP port numbers, too, to support protocols and applications such as iperf3 which use UDP port numbers matching the ones used by the TCP data connection. If we scan UDP ports in order to bind UDP ports, we skip detection of the UDP ports we already bound ourselves, to avoid looping back our own ports. Same with scanning and binding TCP ports. But if we scan for TCP ports in order to bind UDP ports, we need to skip bound TCP ports too, otherwise, as David pointed out: - we find a bound TCP port on side A, and bind the corresponding TCP and UDP ports on side B - at the next periodic scan, we find that UDP port bound on side B, and we bind the corresponding UDP port on side A - at this point, we unbind that UDP port on side B: we would otherwise loop back our own port. To fix this, we need to avoid binding UDP ports that we already bound, on the other side, as a consequence of finding a corresponding bound TCP port. Reproducing this issue is straightforward: ./pasta -- iperf3 -s # Wait one second, then from another terminal: iperf3 -c ::1 -u Reported-by: Akihiro Suda <akihiro.suda.cz@hco.ntt.co.jp> Analysed-by: David Gibson <david@gibson.dropbear.id.au> Fixes: 457ff122e33c ("udp,pasta: Periodically scan for ports to automatically forward") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-21 17:18:26 +01:00
/**
* bitmap_or() - Logical disjunction (OR) of two bitmaps
* @dst: Pointer to result bitmap
* @size: Size of bitmaps, in bytes
* @a: First operand
* @b: Second operand
*/
void bitmap_or(uint8_t *dst, size_t size, const uint8_t *a, const uint8_t *b)
{
unsigned long *dw = (unsigned long *)dst;
unsigned long *aw = (unsigned long *)a;
unsigned long *bw = (unsigned long *)b;
size_t i;
for (i = 0; i < size / sizeof(long); i++, dw++, aw++, bw++)
*dw = *aw | *bw;
for (i = size / sizeof(long) * sizeof(long); i < size; i++)
dst[i] = a[i] | b[i];
}
/*
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
* ns_enter() - Enter configured user (unless already joined) and network ns
* @c: Execution context
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
*
* Won't return on failure
*
* #syscalls:pasta setns
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
*/
void ns_enter(const struct ctx *c)
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
{
if (setns(c->pasta_netns_fd, CLONE_NEWNET))
die_perror("setns() failed entering netns");
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
}
/**
* ns_is_init() - Is the caller running in the "init" user namespace?
*
* Return: true if caller is in init, false otherwise, won't return on failure
*/
bool ns_is_init(void)
{
const char root_uid_map[] = " 0 0 4294967295\n";
char buf[sizeof(root_uid_map)] = { 0 };
bool ret = true;
int fd;
if ((fd = open("/proc/self/uid_map", O_RDONLY | O_CLOEXEC)) < 0)
die_perror("Can't determine if we're in init namespace");
if (read(fd, buf, sizeof(root_uid_map)) != sizeof(root_uid_map) - 1 ||
strncmp(buf, root_uid_map, sizeof(root_uid_map)))
ret = false;
close(fd);
return ret;
}
/**
* struct open_in_ns_args - Parameters for do_open_in_ns()
* @c: Execution context
* @fd: Filled in with return value from open()
* @err: Filled in with errno if open() failed
* @path: Path to open
* @flags: open() flags
*/
struct open_in_ns_args {
const struct ctx *c;
int fd;
int err;
const char *path;
int flags;
};
/**
* do_open_in_ns() - Enter namespace and open a file
* @arg: See struct open_in_ns_args
*
* Must be called via NS_CALL()
*/
static int do_open_in_ns(void *arg)
{
struct open_in_ns_args *a = (struct open_in_ns_args *)arg;
ns_enter(a->c);
a->fd = open(a->path, a->flags);
a->err = errno;
return 0;
}
/**
* open_in_ns() - open() within the pasta namespace
* @c: Execution context
* @path: Path to open
* @flags: open() flags
*
* Return: fd of open()ed file or -1 on error, errno is set to indicate error
*/
int open_in_ns(const struct ctx *c, const char *path, int flags)
{
struct open_in_ns_args arg = {
.c = c, .path = path, .flags = flags,
};
NS_CALL(do_open_in_ns, &arg);
errno = arg.err;
return arg.fd;
}
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
/**
* pidfile_write() - Write PID to file, if requested to do so, and close it
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
* @fd: Open PID file descriptor, closed on exit, -1 to skip writing it
* @pid: PID value to write
*/
void pidfile_write(int fd, pid_t pid)
{
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
char pid_buf[12];
int n;
if (fd == -1)
return;
n = snprintf(pid_buf, sizeof(pid_buf), "%i\n", pid);
if (write(fd, pid_buf, n) < 0) {
perror("PID file write");
exit(EXIT_FAILURE);
}
close(fd);
}
/**
* pidfile_open() - Open PID file if needed
* @path: Path for PID file, empty string if no PID file is requested
*
* Return: descriptor for PID file, -1 if path is NULL, won't return on failure
*/
int pidfile_open(const char *path)
{
int fd;
if (!*path)
return -1;
if ((fd = open(path, O_CREAT | O_TRUNC | O_WRONLY | O_CLOEXEC,
S_IRUSR | S_IWUSR)) < 0) {
perror("PID file open");
exit(EXIT_FAILURE);
}
return fd;
}
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
/**
* __daemon() - daemon()-like function writing PID file before parent exits
* @pidfile_fd: Open PID file descriptor
* @devnull_fd: Open file descriptor for /dev/null
*
* Return: child PID on success, won't return on failure
*/
int __daemon(int pidfile_fd, int devnull_fd)
{
pid_t pid = fork();
if (pid == -1) {
perror("fork");
exit(EXIT_FAILURE);
}
if (pid) {
pidfile_write(pidfile_fd, pid);
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
exit(EXIT_SUCCESS);
}
errno = 0;
setsid();
dup2(devnull_fd, STDIN_FILENO);
dup2(devnull_fd, STDOUT_FILENO);
dup2(devnull_fd, STDERR_FILENO);
close(devnull_fd);
if (errno)
exit(EXIT_FAILURE);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
return 0;
}
/**
* fls() - Find last (most significant) bit set in word
* @x: Word
*
* Return: position of most significant bit set, starting from 0, -1 if none
*/
int fls(unsigned long x)
{
int y = 0;
if (!x)
return -1;
while (x >>= 1)
y++;
return y;
}
/**
* write_file() - Replace contents of file with a string
* @path: File to write
* @buf: String to write
*
* Return: 0 on success, -1 on any error
*/
int write_file(const char *path, const char *buf)
{
int fd = open(path, O_WRONLY | O_TRUNC | O_CLOEXEC);
size_t len = strlen(buf);
if (fd < 0) {
warn_perror("Could not open %s", path);
return -1;
}
while (len) {
ssize_t rc = write(fd, buf, len);
if (rc <= 0) {
warn_perror("Couldn't write to %s", path);
break;
}
buf += rc;
len -= rc;
}
close(fd);
return len == 0 ? 0 : -1;
}
#ifdef __ia64__
/* Needed by do_clone() below: glibc doesn't export the prototype of __clone2(),
* use the description from clone(2).
*/
int __clone2(int (*fn)(void *), void *stack_base, size_t stack_size, int flags,
void *arg, ... /* pid_t *parent_tid, struct user_desc *tls,
pid_t *child_tid */ );
#endif
/**
* do_clone() - Wrapper of __clone2() for ia64, clone() for other architectures
* @fn: Entry point for child
* @stack_area: Stack area for child: we'll point callees to the middle of it
* @stack_size: Total size of stack area, passed to callee divided by two
* @flags: clone() system call flags
* @arg: Argument to @fn
*
* Return: thread ID of child, -1 on failure
*/
int do_clone(int (*fn)(void *), char *stack_area, size_t stack_size, int flags,
void *arg)
{
#ifdef __ia64__
return __clone2(fn, stack_area + stack_size / 2, stack_size / 2,
flags, arg);
#else
return clone(fn, stack_area + stack_size / 2, flags, arg);
#endif
}
/* write_remainder() - write the tail of an IO vector to an fd
* @fd: File descriptor
* @iov: IO vector
* @iovcnt: Number of entries in @iov
* @skip: Number of bytes of the vector to skip writing
*
* Return: 0 on success, -1 on error (with errno set)
*
* #syscalls write writev
*/
int write_remainder(int fd, const struct iovec *iov, size_t iovcnt, size_t skip)
{
size_t offset, i;
while ((i = iov_skip_bytes(iov, iovcnt, skip, &offset)) < iovcnt) {
ssize_t rc;
if (offset) {
rc = write(fd, (char *)iov[i].iov_base + offset,
iov[i].iov_len - offset);
} else {
rc = writev(fd, &iov[i], iovcnt - i);
}
if (rc < 0)
return -1;
skip += rc;
}
return 0;
}
/** sockaddr_ntop() - Convert a socket address to text format
* @sa: Socket address
* @dst: output buffer, minimum SOCKADDR_STRLEN bytes
* @size: size of buffer at @dst
*
* Return: On success, a non-null pointer to @dst, NULL on failure
*/
const char *sockaddr_ntop(const void *sa, char *dst, socklen_t size)
{
sa_family_t family = ((const struct sockaddr *)sa)->sa_family;
socklen_t off = 0;
#define IPRINTF(...) \
do { \
off += snprintf(dst + off, size - off, __VA_ARGS__); \
if (off >= size) \
return NULL; \
} while (0)
#define INTOP(af, addr) \
do { \
if (!inet_ntop((af), (addr), dst + off, size - off)) \
return NULL; \
off += strlen(dst + off); \
} while (0)
switch (family) {
case AF_UNSPEC:
IPRINTF("<unspecified>");
break;
case AF_INET: {
const struct sockaddr_in *sa4 = sa;
INTOP(AF_INET, &sa4->sin_addr);
IPRINTF(":%hu", ntohs(sa4->sin_port));
break;
}
case AF_INET6: {
const struct sockaddr_in6 *sa6 = sa;
IPRINTF("[");
INTOP(AF_INET6, &sa6->sin6_addr);
IPRINTF("]:%hu", ntohs(sa6->sin6_port));
break;
}
/* FIXME: Implement AF_UNIX */
default:
errno = EAFNOSUPPORT;
return NULL;
}
#undef IPRINTF
#undef INTOP
return dst;
}
/** eth_ntop() - Convert an Ethernet MAC address to text format
* @mac: MAC address
* @dst: Output buffer, minimum ETH_ADDRSTRLEN bytes
* @size: Size of buffer at @dst
*
* Return: On success, a non-null pointer to @dst, NULL on failure
*/
const char *eth_ntop(const unsigned char *mac, char *dst, size_t size)
{
int len;
len = snprintf(dst, size, "%02x:%02x:%02x:%02x:%02x:%02x",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
if (len < 0 || (size_t)len >= size)
return NULL;
return dst;
}
/** str_ee_origin() - Convert socket extended error origin to a string
* @ee: Socket extended error structure
*
* Return: Static string describing error origin
*/
const char *str_ee_origin(const struct sock_extended_err *ee)
{
const char *const desc[] = {
[SO_EE_ORIGIN_NONE] = "<no origin>",
[SO_EE_ORIGIN_LOCAL] = "Local",
[SO_EE_ORIGIN_ICMP] = "ICMP",
[SO_EE_ORIGIN_ICMP6] = "ICMPv6",
};
if (ee->ee_origin < ARRAY_SIZE(desc))
return desc[ee->ee_origin];
return "<invalid>";
}
/**
* close_open_files() - Close leaked files, but not --fd, stdin, stdout, stderr
* @argc: Argument count
* @argv: Command line options, as we need to skip any file given via --fd
*/
void close_open_files(int argc, char **argv)
{
const struct option optfd[] = { { "fd", required_argument, NULL, 'F' },
{ 0 },
};
long fd = -1;
int name, rc;
do {
name = getopt_long(argc, argv, "-:F:", optfd, NULL);
if (name == 'F') {
errno = 0;
fd = strtol(optarg, NULL, 0);
if (errno || fd <= STDERR_FILENO || fd > INT_MAX)
die("Invalid --fd: %s", optarg);
}
} while (name != -1);
if (fd == -1) {
rc = close_range(STDERR_FILENO + 1, ~0U, CLOSE_RANGE_UNSHARE);
} else if (fd == STDERR_FILENO + 1) { /* Still a single range */
rc = close_range(STDERR_FILENO + 2, ~0U, CLOSE_RANGE_UNSHARE);
} else {
rc = close_range(STDERR_FILENO + 1, fd - 1,
CLOSE_RANGE_UNSHARE);
if (!rc)
rc = close_range(fd + 1, ~0U, CLOSE_RANGE_UNSHARE);
}
if (rc)
die_perror("Failed to close files leaked by parent");
}