passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
// SPDX-License-Identifier: AGPL-3.0-or-later
|
|
|
|
|
|
|
|
/* PASST - Plug A Simple Socket Transport
|
|
|
|
*
|
|
|
|
* udp.c - UDP L2-L4 translation routines
|
|
|
|
*
|
|
|
|
* Copyright (c) 2020-2021 Red Hat GmbH
|
|
|
|
* Author: Stefano Brivio <sbrivio@redhat.com>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* DOC: Theory of Operation
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* For UDP, no state machine or any particular tracking is required. Try to
|
|
|
|
* create and bind sets of 2^16 sockets, one for IPv4 and one for IPv6. Binding
|
|
|
|
* will fail on ports that are already bound, or low ports depending on
|
|
|
|
* capabilities.
|
|
|
|
*
|
|
|
|
* Packets are forwarded back and forth, by prepending and stripping UDP headers
|
|
|
|
* in the obvious way, with no port translation.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2021-04-22 13:39:36 +02:00
|
|
|
#define _GNU_SOURCE
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <limits.h>
|
|
|
|
#include <net/ethernet.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <netinet/in.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <sys/epoll.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/socket.h>
|
2021-04-22 13:39:36 +02:00
|
|
|
#include <sys/uio.h>
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
#include <unistd.h>
|
|
|
|
#include <linux/ip.h>
|
|
|
|
#include <linux/ipv6.h>
|
|
|
|
#include <linux/udp.h>
|
|
|
|
#include <time.h>
|
|
|
|
|
|
|
|
#include "passt.h"
|
|
|
|
#include "tap.h"
|
|
|
|
#include "util.h"
|
|
|
|
|
|
|
|
static int udp4_sock_port[USHRT_MAX];
|
|
|
|
static int udp6_sock_port[USHRT_MAX];
|
|
|
|
|
|
|
|
/**
|
|
|
|
* udp_sock_handler() - Handle new data from socket
|
|
|
|
* @c: Execution context
|
|
|
|
* @s: File descriptor number for socket
|
|
|
|
* @events: epoll events bitmap
|
|
|
|
*/
|
|
|
|
void udp_sock_handler(struct ctx *c, int s, uint32_t events)
|
|
|
|
{
|
|
|
|
struct in6_addr a6 = { .s6_addr = { 0, 0, 0, 0,
|
|
|
|
0, 0, 0, 0,
|
|
|
|
0, 0, 0xff, 0xff,
|
|
|
|
0, 0, 0, 0 } };
|
|
|
|
struct sockaddr_storage sr, sl;
|
|
|
|
socklen_t slen = sizeof(sr);
|
|
|
|
char buf[USHRT_MAX];
|
|
|
|
struct udphdr *uh;
|
2021-03-17 10:57:42 +01:00
|
|
|
ssize_t n;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
|
|
|
|
(void)events;
|
|
|
|
|
|
|
|
n = recvfrom(s, buf + sizeof(*uh), sizeof(buf) - sizeof(*uh),
|
|
|
|
MSG_DONTWAIT, (struct sockaddr *)&sr, &slen);
|
|
|
|
if (n < 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
uh = (struct udphdr *)buf;
|
|
|
|
|
|
|
|
if (getsockname(s, (struct sockaddr *)&sl, &slen))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (sl.ss_family == AF_INET) {
|
|
|
|
struct sockaddr_in *sr4 = (struct sockaddr_in *)&sr;
|
|
|
|
struct sockaddr_in *sl4 = (struct sockaddr_in *)&sl;
|
|
|
|
|
2021-04-22 17:03:43 +02:00
|
|
|
if (ntohl(sr4->sin_addr.s_addr) == INADDR_LOOPBACK ||
|
|
|
|
ntohl(sr4->sin_addr.s_addr) == INADDR_ANY)
|
|
|
|
sr4->sin_addr.s_addr = c->gw4;
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
memcpy(&a6.s6_addr[12], &sr4->sin_addr, sizeof(sr4->sin_addr));
|
|
|
|
uh->source = sr4->sin_port;
|
|
|
|
uh->dest = sl4->sin_port;
|
|
|
|
uh->len = htons(n + sizeof(*uh));
|
|
|
|
|
|
|
|
tap_ip_send(c, &a6, IPPROTO_UDP, buf, n + sizeof(*uh));
|
|
|
|
} else if (sl.ss_family == AF_INET6) {
|
|
|
|
struct sockaddr_in6 *sr6 = (struct sockaddr_in6 *)&sr;
|
|
|
|
struct sockaddr_in6 *sl6 = (struct sockaddr_in6 *)&sl;
|
|
|
|
|
2021-04-22 17:03:43 +02:00
|
|
|
if (IN6_IS_ADDR_LOOPBACK(&sr6->sin6_addr))
|
|
|
|
memcpy(&sr6->sin6_addr, &c->gw6, sizeof(c->gw6));
|
|
|
|
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
uh->source = sr6->sin6_port;
|
|
|
|
uh->dest = sl6->sin6_port;
|
|
|
|
uh->len = htons(n + sizeof(*uh));
|
|
|
|
|
|
|
|
tap_ip_send(c, &sr6->sin6_addr, IPPROTO_UDP,
|
|
|
|
buf, n + sizeof(*uh));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2021-03-17 10:57:42 +01:00
|
|
|
* udp_tap_handler() - Handle packets from tap
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
* @c: Execution context
|
|
|
|
* @af: Address family, AF_INET or AF_INET6
|
2021-04-22 13:39:36 +02:00
|
|
|
* @msg: Input messages
|
|
|
|
* @count: Message count
|
|
|
|
*
|
|
|
|
* Return: count of consumed packets
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
*/
|
2021-04-22 13:39:36 +02:00
|
|
|
int udp_tap_handler(struct ctx *c, int af, void *addr,
|
|
|
|
struct tap_msg *msg, int count)
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
{
|
2021-04-22 13:39:36 +02:00
|
|
|
/* The caller already checks that all the messages have the same source
|
|
|
|
* and destination, so we can just take those from the first message.
|
|
|
|
*/
|
|
|
|
struct udphdr *uh = (struct udphdr *)msg[0].l4h;
|
|
|
|
struct mmsghdr mm[UIO_MAXIOV] = { 0 };
|
|
|
|
struct iovec m[UIO_MAXIOV];
|
|
|
|
struct sockaddr_in6 s_in6;
|
|
|
|
struct sockaddr_in s_in;
|
|
|
|
struct sockaddr *sa;
|
|
|
|
socklen_t sl;
|
|
|
|
int i, s;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
|
|
|
|
(void)c;
|
|
|
|
|
|
|
|
if (af == AF_INET) {
|
2021-04-22 13:39:36 +02:00
|
|
|
s_in = (struct sockaddr_in) {
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
.sin_family = AF_INET,
|
|
|
|
.sin_port = uh->dest,
|
2021-04-22 13:39:36 +02:00
|
|
|
.sin_addr = *(struct in_addr *)addr,
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
};
|
|
|
|
|
2021-04-22 13:39:36 +02:00
|
|
|
sa = (struct sockaddr *)&s_in;
|
|
|
|
sl = sizeof(s_in);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
} else if (af == AF_INET6) {
|
2021-04-22 13:39:36 +02:00
|
|
|
s_in6 = (struct sockaddr_in6) {
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
.sin6_family = AF_INET6,
|
|
|
|
.sin6_port = uh->dest,
|
|
|
|
.sin6_addr = *(struct in6_addr *)addr,
|
|
|
|
};
|
|
|
|
|
2021-04-22 13:39:36 +02:00
|
|
|
sa = (struct sockaddr *)&s_in6;
|
|
|
|
sl = sizeof(s_in6);
|
|
|
|
} else {
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
m[i].iov_base = (char *)((struct udphdr *)msg[i].l4h + 1);
|
|
|
|
m[i].iov_len = msg[i].l4_len - sizeof(*uh);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
|
2021-04-22 13:39:36 +02:00
|
|
|
mm[i].msg_hdr.msg_name = sa;
|
|
|
|
mm[i].msg_hdr.msg_namelen = sl;
|
|
|
|
|
|
|
|
mm[i].msg_hdr.msg_iov = m + i;
|
|
|
|
mm[i].msg_hdr.msg_iovlen = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (af == AF_INET) {
|
|
|
|
if (!(s = udp4_sock_port[ntohs(uh->source)]))
|
|
|
|
return count;
|
|
|
|
} else if (af == AF_INET6) {
|
|
|
|
if (!(s = udp6_sock_port[ntohs(uh->source)]))
|
|
|
|
return count;
|
|
|
|
} else {
|
|
|
|
return count;
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
}
|
2021-04-22 13:39:36 +02:00
|
|
|
|
|
|
|
return sendmmsg(s, mm, count, MSG_DONTWAIT | MSG_NOSIGNAL);
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:33:38 +01:00
|
|
|
* udp_sock_init() - Create and bind listening sockets for inbound packets
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
* @c: Execution context
|
|
|
|
*
|
|
|
|
* Return: 0 on success, -1 on failure
|
|
|
|
*/
|
|
|
|
int udp_sock_init(struct ctx *c)
|
|
|
|
{
|
|
|
|
in_port_t port;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
for (port = 0; port < USHRT_MAX; port++) {
|
passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:
- make buffer, length parameter ordering consistent in ARP, DHCP,
NDP handlers
- strict checking of buffer, message and option length in DHCP
handler (a malicious client could have easily crashed it)
- set up forwarding for IPv4 and IPv6, and masquerading with nft for
IPv4, from demo script
- get rid of separate slow and fast timers, we don't save any
overhead that way
- stricter checking of buffer lengths as passed to tap handlers
- proper dequeuing from qemu socket back-end: I accidentally trashed
messages that were bundled up together in a single tap read
operation -- the length header tells us what's the size of the next
frame, but there's no apparent limit to the number of messages we
get with one single receive
- rework some bits of the TCP state machine, now passive and active
connection closes appear to be robust -- introduce a new
FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
from socket
- streamline TCP option parsing routine
- track TCP state changes to stderr (this is temporary, proper
debugging and syslogging support pending)
- observe that multiplying a number by four might very well change
its value, and this happens to be the case for the data offset
from the TCP header as we check if it's the same as the total
length to find out if it's a duplicated ACK segment
- recent estimates suggest that the duration of a millisecond is
closer to a million nanoseconds than a thousand of them, this
trend is now reflected into the timespec_diff_ms() convenience
routine
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:33:38 +01:00
|
|
|
if (c->v4) {
|
|
|
|
if ((s = sock_l4_add(c, 4, IPPROTO_UDP, port)) < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
udp4_sock_port[port] = s;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (c->v6) {
|
|
|
|
if ((s = sock_l4_add(c, 6, IPPROTO_UDP, port)) < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
udp6_sock_port[port] = s;
|
|
|
|
}
|
passt: New design and implementation with native Layer 4 sockets
This is a reimplementation, partially building on the earlier draft,
that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW,
providing L4-L2 translation functionality without requiring any
security capability.
Conceptually, this follows the design presented at:
https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md
The most significant novelty here comes from TCP and UDP translation
layers. In particular, the TCP state and translation logic follows
the intent of being minimalistic, without reimplementing a full TCP
stack in either direction, and synchronising as much as possible the
TCP dynamic and flows between guest and host kernel.
Another important introduction concerns addressing, port translation
and forwarding. The Layer 4 implementations now attempt to bind on
all unbound ports, in order to forward connections in a transparent
way.
While at it:
- the qemu 'tap' back-end can't be used as-is by qrap anymore,
because of explicit checks now introduced in qemu to ensure that
the corresponding file descriptor is actually a tap device. For
this reason, qrap now operates on a 'socket' back-end type,
accounting for and building the additional header reporting
frame length
- provide a demo script that sets up namespaces, addresses and
routes, and starts the daemon. A virtual machine started in the
network namespace, wrapped by qrap, will now directly interface
with passt and communicate using Layer 4 sockets provided by the
host kernel.
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|