passt/flow.c
David Gibson 4cd753e65c icmp: Manage outbound socket address via flow table
For now when we forward a ping to the host we leave the host side
forwarding address and port blank since we don't necessarily know what
source address and id will be used by the kernel.  When the outbound
address option is active, though, we do know the address at least, so we
can record it in the flowside.

Having done that, use it as the primary source of truth, binding the
outgoing socket based on the information in there.  This allows the
possibility of more complex rules for what outbound address and/or id
we use in future.

To implement this we create a new helper which sets up a new socket based
on information in a flowside, which will also have future uses.  It
behaves slightly differently from the existing ICMP code, in that it
doesn't bind to a specific interface if given a loopback address.  This is
logically correct - the loopback address means we need to operate through
the host's loopback interface, not ifname_out.  We didn't need it in ICMP
because ICMP will never generate a loopback address at this point, however
we intend to change that in future.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-07-19 18:33:25 +02:00

804 lines
22 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright Red Hat
* Author: David Gibson <david@gibson.dropbear.id.au>
*
* Tracking for logical "flows" of packets.
*/
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <sched.h>
#include <string.h>
#include "util.h"
#include "ip.h"
#include "passt.h"
#include "siphash.h"
#include "inany.h"
#include "flow.h"
#include "flow_table.h"
const char *flow_state_str[] = {
[FLOW_STATE_FREE] = "FREE",
[FLOW_STATE_NEW] = "NEW",
[FLOW_STATE_INI] = "INI",
[FLOW_STATE_TGT] = "TGT",
[FLOW_STATE_TYPED] = "TYPED",
[FLOW_STATE_ACTIVE] = "ACTIVE",
};
static_assert(ARRAY_SIZE(flow_state_str) == FLOW_NUM_STATES,
"flow_state_str[] doesn't match enum flow_state");
const char *flow_type_str[] = {
[FLOW_TYPE_NONE] = "<none>",
[FLOW_TCP] = "TCP connection",
[FLOW_TCP_SPLICE] = "TCP connection (spliced)",
[FLOW_PING4] = "ICMP ping sequence",
[FLOW_PING6] = "ICMPv6 ping sequence",
};
static_assert(ARRAY_SIZE(flow_type_str) == FLOW_NUM_TYPES,
"flow_type_str[] doesn't match enum flow_type");
const uint8_t flow_proto[] = {
[FLOW_TCP] = IPPROTO_TCP,
[FLOW_TCP_SPLICE] = IPPROTO_TCP,
[FLOW_PING4] = IPPROTO_ICMP,
[FLOW_PING6] = IPPROTO_ICMPV6,
};
static_assert(ARRAY_SIZE(flow_proto) == FLOW_NUM_TYPES,
"flow_proto[] doesn't match enum flow_type");
/* Global Flow Table */
/**
* DOC: Theory of Operation - allocating and freeing flow entries
*
* Flows are entries in flowtab[]. We need to routinely scan the whole table to
* perform deferred bookkeeping tasks on active entries, and sparse empty slots
* waste time and worsen data locality. But, keeping the table fully compact by
* moving entries on deletion is fiddly: it requires updating hash tables, and
* the epoll references to flows. Instead, we implement the compromise described
* below.
*
* Free clusters
* A "free cluster" is a contiguous set of unused (FLOW_TYPE_NONE) entries in
* flowtab[]. The first entry in each cluster contains metadata ('free'
* field in union flow), specifically the number of entries in the cluster
* (free.n), and the index of the next free cluster (free.next). The entries
* in the cluster other than the first should have n == next == 0.
*
* Free cluster list
* flow_first_free gives the index of the first (lowest index) free cluster.
* Each free cluster has the index of the next free cluster, or MAX_FLOW if
* it is the last free cluster. Together these form a linked list of free
* clusters, in strictly increasing order of index.
*
* Allocating
* We always allocate a new flow into the lowest available index, i.e. the
* first entry of the first free cluster, that is, at index flow_first_free.
* We update flow_first_free and the free cluster to maintain the invariants
* above (so the free cluster list is still in strictly increasing order).
*
* Freeing
* It's not possible to maintain the invariants above if we allow freeing of
* any entry at any time. So we only allow freeing in two cases.
*
* 1) flow_alloc_cancel() will free the most recent allocation. We can
* maintain the invariants because we know that allocation was made in the
* lowest available slot, and so will become the lowest index free slot again
* after cancellation.
*
* 2) Flows can be freed by returning true from the flow type specific
* deferred or timer function. These are called from flow_defer_handler()
* which is already scanning the whole table in index order. We can use that
* to rebuild the free cluster list correctly, either merging them into
* existing free clusters or creating new free clusters in the list for them.
*
* Scanning the table
* Theoretically, scanning the table requires FLOW_MAX iterations. However,
* when we encounter the start of a free cluster, we can immediately skip
* past it, meaning that in practice we only need (number of active
* connections) + (number of free clusters) iterations.
*/
unsigned flow_first_free;
union flow flowtab[FLOW_MAX];
static const union flow *flow_new_entry; /* = NULL */
/* Hash table to index it */
#define FLOW_HASH_LOAD 70 /* % */
#define FLOW_HASH_SIZE ((2 * FLOW_MAX * 100 / FLOW_HASH_LOAD))
/* Table for lookup from flowside information */
static flow_sidx_t flow_hashtab[FLOW_HASH_SIZE];
static_assert(ARRAY_SIZE(flow_hashtab) >= 2 * FLOW_MAX,
"Safe linear probing requires hash table with more entries than the number of sides in the flow table");
/* Last time the flow timers ran */
static struct timespec flow_timer_run;
/** flowside_from_af() - Initialise flowside from addresses
* @side: flowside to initialise
* @af: Address family (AF_INET or AF_INET6)
* @eaddr: Endpoint address (pointer to in_addr or in6_addr)
* @eport: Endpoint port
* @faddr: Forwarding address (pointer to in_addr or in6_addr)
* @fport: Forwarding port
*/
static void flowside_from_af(struct flowside *side, sa_family_t af,
const void *eaddr, in_port_t eport,
const void *faddr, in_port_t fport)
{
if (faddr)
inany_from_af(&side->faddr, af, faddr);
else
side->faddr = inany_any6;
side->fport = fport;
if (eaddr)
inany_from_af(&side->eaddr, af, eaddr);
else
side->eaddr = inany_any6;
side->eport = eport;
}
/**
* struct flowside_sock_args - Parameters for flowside_sock_splice()
* @c: Execution context
* @fd: Filled in with new socket fd
* @err: Filled in with errno if something failed
* @type: Socket epoll type
* @sa: Socket address
* @sl: Length of @sa
* @data: epoll reference data
*/
struct flowside_sock_args {
const struct ctx *c;
int fd;
int err;
enum epoll_type type;
const struct sockaddr *sa;
socklen_t sl;
const char *path;
uint32_t data;
};
/** flowside_sock_splice() - Create and bind socket for PIF_SPLICE based on flowside
* @arg: Argument as a struct flowside_sock_args
*
* Return: 0
*/
static int flowside_sock_splice(void *arg)
{
struct flowside_sock_args *a = arg;
ns_enter(a->c);
a->fd = sock_l4_sa(a->c, a->type, a->sa, a->sl, NULL,
a->sa->sa_family == AF_INET6, a->data);
a->err = errno;
return 0;
}
/** flowside_sock_l4() - Create and bind socket based on flowside
* @c: Execution context
* @type: Socket epoll type
* @pif: Interface for this socket
* @tgt: Target flowside
* @data: epoll reference portion for protocol handlers
*
* Return: socket fd of protocol @proto bound to the forwarding address and port
* from @tgt (if specified).
*/
int flowside_sock_l4(const struct ctx *c, enum epoll_type type, uint8_t pif,
const struct flowside *tgt, uint32_t data)
{
const char *ifname = NULL;
union sockaddr_inany sa;
socklen_t sl;
ASSERT(pif_is_socket(pif));
pif_sockaddr(c, &sa, &sl, pif, &tgt->faddr, tgt->fport);
switch (pif) {
case PIF_HOST:
if (inany_is_loopback(&tgt->faddr))
ifname = NULL;
else if (sa.sa_family == AF_INET)
ifname = c->ip4.ifname_out;
else if (sa.sa_family == AF_INET6)
ifname = c->ip6.ifname_out;
return sock_l4_sa(c, type, &sa, sl, ifname,
sa.sa_family == AF_INET6, data);
case PIF_SPLICE: {
struct flowside_sock_args args = {
.c = c, .type = type,
.sa = &sa.sa, .sl = sl, .data = data,
};
NS_CALL(flowside_sock_splice, &args);
errno = args.err;
return args.fd;
}
default:
/* If we add new socket pifs, they'll need to be implemented
* here
*/
ASSERT(0);
}
}
/** flow_log_ - Log flow-related message
* @f: flow the message is related to
* @pri: Log priority
* @fmt: Format string
* @...: printf-arguments
*/
void flow_log_(const struct flow_common *f, int pri, const char *fmt, ...)
{
const char *type_or_state;
char msg[BUFSIZ];
va_list args;
va_start(args, fmt);
(void)vsnprintf(msg, sizeof(msg), fmt, args);
va_end(args);
/* Show type if it's set, otherwise the state */
if (f->state < FLOW_STATE_TYPED)
type_or_state = FLOW_STATE(f);
else
type_or_state = FLOW_TYPE(f);
logmsg(pri, "Flow %u (%s): %s", flow_idx(f), type_or_state, msg);
}
/**
* flow_set_state() - Change flow's state
* @f: Flow changing state
* @state: New state
*/
static void flow_set_state(struct flow_common *f, enum flow_state state)
{
char estr0[INANY_ADDRSTRLEN], fstr0[INANY_ADDRSTRLEN];
char estr1[INANY_ADDRSTRLEN], fstr1[INANY_ADDRSTRLEN];
const struct flowside *ini = &f->side[INISIDE];
const struct flowside *tgt = &f->side[TGTSIDE];
uint8_t oldstate = f->state;
ASSERT(state < FLOW_NUM_STATES);
ASSERT(oldstate < FLOW_NUM_STATES);
f->state = state;
flow_log_(f, LOG_DEBUG, "%s -> %s", flow_state_str[oldstate],
FLOW_STATE(f));
if (MAX(state, oldstate) >= FLOW_STATE_TGT)
flow_log_(f, LOG_DEBUG,
"%s [%s]:%hu -> [%s]:%hu => %s [%s]:%hu -> [%s]:%hu",
pif_name(f->pif[INISIDE]),
inany_ntop(&ini->eaddr, estr0, sizeof(estr0)),
ini->eport,
inany_ntop(&ini->faddr, fstr0, sizeof(fstr0)),
ini->fport,
pif_name(f->pif[TGTSIDE]),
inany_ntop(&tgt->faddr, fstr1, sizeof(fstr1)),
tgt->fport,
inany_ntop(&tgt->eaddr, estr1, sizeof(estr1)),
tgt->eport);
else if (MAX(state, oldstate) >= FLOW_STATE_INI)
flow_log_(f, LOG_DEBUG, "%s [%s]:%hu -> [%s]:%hu => ?",
pif_name(f->pif[INISIDE]),
inany_ntop(&ini->eaddr, estr0, sizeof(estr0)),
ini->eport,
inany_ntop(&ini->faddr, fstr0, sizeof(fstr0)),
ini->fport);
}
/**
* flow_initiate_() - Move flow to INI, setting pif[INISIDE]
* @flow: Flow to change state
* @pif: pif of the initiating side
*/
static void flow_initiate_(union flow *flow, uint8_t pif)
{
struct flow_common *f = &flow->f;
ASSERT(pif != PIF_NONE);
ASSERT(flow_new_entry == flow && f->state == FLOW_STATE_NEW);
ASSERT(f->type == FLOW_TYPE_NONE);
ASSERT(f->pif[INISIDE] == PIF_NONE && f->pif[TGTSIDE] == PIF_NONE);
f->pif[INISIDE] = pif;
flow_set_state(f, FLOW_STATE_INI);
}
/**
* flow_initiate_af() - Move flow to INI, setting INISIDE details
* @flow: Flow to change state
* @pif: pif of the initiating side
* @af: Address family of @eaddr and @faddr
* @saddr: Source address (pointer to in_addr or in6_addr)
* @sport: Endpoint port
* @daddr: Destination address (pointer to in_addr or in6_addr)
* @dport: Destination port
*
* Return: pointer to the initiating flowside information
*/
const struct flowside *flow_initiate_af(union flow *flow, uint8_t pif,
sa_family_t af,
const void *saddr, in_port_t sport,
const void *daddr, in_port_t dport)
{
struct flowside *ini = &flow->f.side[INISIDE];
flowside_from_af(ini, af, saddr, sport, daddr, dport);
flow_initiate_(flow, pif);
return ini;
}
/**
* flow_initiate_sa() - Move flow to INI, setting INISIDE details
* @flow: Flow to change state
* @pif: pif of the initiating side
* @ssa: Source socket address
* @dport: Destination port
*
* Return: pointer to the initiating flowside information
*/
const struct flowside *flow_initiate_sa(union flow *flow, uint8_t pif,
const union sockaddr_inany *ssa,
in_port_t dport)
{
struct flowside *ini = &flow->f.side[INISIDE];
inany_from_sockaddr(&ini->eaddr, &ini->eport, ssa);
if (inany_v4(&ini->eaddr))
ini->faddr = inany_any4;
else
ini->faddr = inany_any6;
ini->fport = dport;
flow_initiate_(flow, pif);
return ini;
}
/**
* flow_target_af() - Move flow to TGT, setting TGTSIDE details
* @flow: Flow to change state
* @pif: pif of the target side
* @af: Address family for @eaddr and @faddr
* @saddr: Source address (pointer to in_addr or in6_addr)
* @sport: Endpoint port
* @daddr: Destination address (pointer to in_addr or in6_addr)
* @dport: Destination port
*
* Return: pointer to the target flowside information
*/
const struct flowside *flow_target_af(union flow *flow, uint8_t pif,
sa_family_t af,
const void *saddr, in_port_t sport,
const void *daddr, in_port_t dport)
{
struct flow_common *f = &flow->f;
struct flowside *tgt = &f->side[TGTSIDE];
ASSERT(pif != PIF_NONE);
ASSERT(flow_new_entry == flow && f->state == FLOW_STATE_INI);
ASSERT(f->type == FLOW_TYPE_NONE);
ASSERT(f->pif[INISIDE] != PIF_NONE && f->pif[TGTSIDE] == PIF_NONE);
flowside_from_af(tgt, af, daddr, dport, saddr, sport);
f->pif[TGTSIDE] = pif;
flow_set_state(f, FLOW_STATE_TGT);
return tgt;
}
/**
* flow_set_type() - Set type and move to TYPED
* @flow: Flow to change state
* @pif: pif of the initiating side
*/
union flow *flow_set_type(union flow *flow, enum flow_type type)
{
struct flow_common *f = &flow->f;
ASSERT(type != FLOW_TYPE_NONE);
ASSERT(flow_new_entry == flow && f->state == FLOW_STATE_TGT);
ASSERT(f->type == FLOW_TYPE_NONE);
ASSERT(f->pif[INISIDE] != PIF_NONE && f->pif[TGTSIDE] != PIF_NONE);
f->type = type;
flow_set_state(f, FLOW_STATE_TYPED);
return flow;
}
/**
* flow_activate() - Move flow to ACTIVE
* @f: Flow to change state
*/
void flow_activate(struct flow_common *f)
{
ASSERT(&flow_new_entry->f == f && f->state == FLOW_STATE_TYPED);
ASSERT(f->pif[INISIDE] != PIF_NONE && f->pif[TGTSIDE] != PIF_NONE);
flow_set_state(f, FLOW_STATE_ACTIVE);
flow_new_entry = NULL;
}
/**
* flow_alloc() - Allocate a new flow
*
* Return: pointer to an unused flow entry, or NULL if the table is full
*/
union flow *flow_alloc(void)
{
union flow *flow = &flowtab[flow_first_free];
ASSERT(!flow_new_entry);
if (flow_first_free >= FLOW_MAX)
return NULL;
ASSERT(flow->f.state == FLOW_STATE_FREE);
ASSERT(flow->f.type == FLOW_TYPE_NONE);
ASSERT(flow->free.n >= 1);
ASSERT(flow_first_free + flow->free.n <= FLOW_MAX);
if (flow->free.n > 1) {
union flow *next;
/* Use one entry from the cluster */
ASSERT(flow_first_free <= FLOW_MAX - 2);
next = &flowtab[++flow_first_free];
ASSERT(FLOW_IDX(next) < FLOW_MAX);
ASSERT(next->f.type == FLOW_TYPE_NONE);
ASSERT(next->free.n == 0);
next->free.n = flow->free.n - 1;
next->free.next = flow->free.next;
} else {
/* Use the entire cluster */
flow_first_free = flow->free.next;
}
flow_new_entry = flow;
memset(flow, 0, sizeof(*flow));
flow_set_state(&flow->f, FLOW_STATE_NEW);
return flow;
}
/**
* flow_alloc_cancel() - Free a newly allocated flow
* @flow: Flow to deallocate
*
* @flow must be the last flow allocated by flow_alloc()
*/
void flow_alloc_cancel(union flow *flow)
{
ASSERT(flow_new_entry == flow);
ASSERT(flow->f.state == FLOW_STATE_NEW ||
flow->f.state == FLOW_STATE_INI ||
flow->f.state == FLOW_STATE_TGT ||
flow->f.state == FLOW_STATE_TYPED);
ASSERT(flow_first_free > FLOW_IDX(flow));
flow_set_state(&flow->f, FLOW_STATE_FREE);
memset(flow, 0, sizeof(*flow));
/* Put it back in a length 1 free cluster, don't attempt to fully
* reverse flow_alloc()s steps. This will get folded together the next
* time flow_defer_handler runs anyway() */
flow->free.n = 1;
flow->free.next = flow_first_free;
flow_first_free = FLOW_IDX(flow);
flow_new_entry = NULL;
}
/**
* flow_hash() - Calculate hash value for one side of a flow
* @c: Execution context
* @proto: Protocol of this flow (IP L4 protocol number)
* @pif: pif of the side to hash
* @side: Flowside (must not have unspecified parts)
*
* Return: hash value
*/
static uint64_t flow_hash(const struct ctx *c, uint8_t proto, uint8_t pif,
const struct flowside *side)
{
struct siphash_state state = SIPHASH_INIT(c->hash_secret);
/* For the hash table to work, we need complete endpoint information,
* and at least a forwarding port.
*/
ASSERT(pif != PIF_NONE && !inany_is_unspecified(&side->eaddr) &&
side->eport != 0 && side->fport != 0);
inany_siphash_feed(&state, &side->faddr);
inany_siphash_feed(&state, &side->eaddr);
return siphash_final(&state, 38, (uint64_t)proto << 40 |
(uint64_t)pif << 32 |
(uint64_t)side->fport << 16 |
(uint64_t)side->eport);
}
/**
* flow_sidx_hash() - Calculate hash value for given side of a given flow
* @c: Execution context
* @sidx: Flow & side index to get hash for
*
* Return: hash value, of the flow & side represented by @sidx
*/
static uint64_t flow_sidx_hash(const struct ctx *c, flow_sidx_t sidx)
{
const struct flow_common *f = &flow_at_sidx(sidx)->f;
return flow_hash(c, FLOW_PROTO(f),
f->pif[sidx.sidei], &f->side[sidx.sidei]);
}
/**
* flow_hash_probe_() - Find hash bucket for a flow, given hash
* @hash: Raw hash value for flow & side
* @sidx: Flow and side to find bucket for
*
* Return: If @sidx is in the hash table, its current bucket, otherwise a
* suitable free bucket for it.
*/
static inline unsigned flow_hash_probe_(uint64_t hash, flow_sidx_t sidx)
{
unsigned b = hash % FLOW_HASH_SIZE;
/* Linear probing */
while (flow_sidx_valid(flow_hashtab[b]) &&
!flow_sidx_eq(flow_hashtab[b], sidx))
b = mod_sub(b, 1, FLOW_HASH_SIZE);
return b;
}
/**
* flow_hash_probe() - Find hash bucket for a flow
* @c: Execution context
* @sidx: Flow and side to find bucket for
*
* Return: If @sidx is in the hash table, its current bucket, otherwise a
* suitable free bucket for it.
*/
static inline unsigned flow_hash_probe(const struct ctx *c, flow_sidx_t sidx)
{
return flow_hash_probe_(flow_sidx_hash(c, sidx), sidx);
}
/**
* flow_hash_insert() - Insert side of a flow into into hash table
* @c: Execution context
* @sidx: Flow & side index
*
* Return: raw (un-modded) hash value of side of flow
*/
uint64_t flow_hash_insert(const struct ctx *c, flow_sidx_t sidx)
{
uint64_t hash = flow_sidx_hash(c, sidx);
unsigned b = flow_hash_probe_(hash, sidx);
flow_hashtab[b] = sidx;
flow_dbg(flow_at_sidx(sidx), "Side %u hash table insert: bucket: %u",
sidx.sidei, b);
return hash;
}
/**
* flow_hash_remove() - Drop side of a flow from the hash table
* @c: Execution context
* @sidx: Side of flow to remove
*/
void flow_hash_remove(const struct ctx *c, flow_sidx_t sidx)
{
unsigned b = flow_hash_probe(c, sidx), s;
if (!flow_sidx_valid(flow_hashtab[b]))
return; /* Redundant remove */
flow_dbg(flow_at_sidx(sidx), "Side %u hash table remove: bucket: %u",
sidx.sidei, b);
/* Scan the remainder of the cluster */
for (s = mod_sub(b, 1, FLOW_HASH_SIZE);
flow_sidx_valid(flow_hashtab[s]);
s = mod_sub(s, 1, FLOW_HASH_SIZE)) {
unsigned h = flow_sidx_hash(c, flow_hashtab[s]) % FLOW_HASH_SIZE;
if (!mod_between(h, s, b, FLOW_HASH_SIZE)) {
/* flow_hashtab[s] can live in flow_hashtab[b]'s slot */
debug("hash table remove: shuffle %u -> %u", s, b);
flow_hashtab[b] = flow_hashtab[s];
b = s;
}
}
flow_hashtab[b] = FLOW_SIDX_NONE;
}
/**
* flowside_lookup() - Look for a matching flowside in the flow table
* @c: Execution context
* @proto: Protocol of the flow (IP L4 protocol number)
* @pif: pif to look for in the table
* @side: Flowside to look for in the table
*
* Return: sidx of the matching flow & side, FLOW_SIDX_NONE if not found
*/
static flow_sidx_t flowside_lookup(const struct ctx *c, uint8_t proto,
uint8_t pif, const struct flowside *side)
{
flow_sidx_t sidx;
union flow *flow;
unsigned b;
b = flow_hash(c, proto, pif, side) % FLOW_HASH_SIZE;
while ((sidx = flow_hashtab[b], flow = flow_at_sidx(sidx)) &&
!(FLOW_PROTO(&flow->f) == proto &&
flow->f.pif[sidx.sidei] == pif &&
flowside_eq(&flow->f.side[sidx.sidei], side)))
b = (b + 1) % FLOW_HASH_SIZE;
return flow_hashtab[b];
}
/**
* flow_lookup_af() - Look up a flow given addressing information
* @c: Execution context
* @proto: Protocol of the flow (IP L4 protocol number)
* @pif: Interface of the flow
* @af: Address family, AF_INET or AF_INET6
* @eaddr: Guest side endpoint address (guest local address)
* @faddr: Guest side forwarding address (guest remote address)
* @eport: Guest side endpoint port (guest local port)
* @fport: Guest side forwarding port (guest remote port)
*
* Return: sidx of the matching flow & side, FLOW_SIDX_NONE if not found
*/
flow_sidx_t flow_lookup_af(const struct ctx *c,
uint8_t proto, uint8_t pif, sa_family_t af,
const void *eaddr, const void *faddr,
in_port_t eport, in_port_t fport)
{
struct flowside side;
flowside_from_af(&side, af, eaddr, eport, faddr, fport);
return flowside_lookup(c, proto, pif, &side);
}
/**
* flow_defer_handler() - Handler for per-flow deferred and timed tasks
* @c: Execution context
* @now: Current timestamp
*/
void flow_defer_handler(const struct ctx *c, const struct timespec *now)
{
struct flow_free_cluster *free_head = NULL;
unsigned *last_next = &flow_first_free;
bool timer = false;
unsigned idx;
if (timespec_diff_ms(now, &flow_timer_run) >= FLOW_TIMER_INTERVAL) {
timer = true;
flow_timer_run = *now;
}
ASSERT(!flow_new_entry); /* Incomplete flow at end of cycle */
for (idx = 0; idx < FLOW_MAX; idx++) {
union flow *flow = &flowtab[idx];
bool closed = false;
switch (flow->f.state) {
case FLOW_STATE_FREE: {
unsigned skip = flow->free.n;
/* First entry of a free cluster must have n >= 1 */
ASSERT(skip);
if (free_head) {
/* Merge into preceding free cluster */
free_head->n += flow->free.n;
flow->free.n = flow->free.next = 0;
} else {
/* New free cluster, add to chain */
free_head = &flow->free;
*last_next = idx;
last_next = &free_head->next;
}
/* Skip remaining empty entries */
idx += skip - 1;
continue;
}
case FLOW_STATE_NEW:
case FLOW_STATE_INI:
case FLOW_STATE_TGT:
case FLOW_STATE_TYPED:
/* Incomplete flow at end of cycle */
ASSERT(false);
break;
case FLOW_STATE_ACTIVE:
/* Nothing to do */
break;
default:
ASSERT(false);
}
switch (flow->f.type) {
case FLOW_TYPE_NONE:
ASSERT(false);
break;
case FLOW_TCP:
closed = tcp_flow_defer(&flow->tcp);
break;
case FLOW_TCP_SPLICE:
closed = tcp_splice_flow_defer(&flow->tcp_splice);
if (!closed && timer)
tcp_splice_timer(c, &flow->tcp_splice);
break;
case FLOW_PING4:
case FLOW_PING6:
if (timer)
closed = icmp_ping_timer(c, &flow->ping, now);
break;
default:
/* Assume other flow types don't need any handling */
;
}
if (closed) {
flow_set_state(&flow->f, FLOW_STATE_FREE);
memset(flow, 0, sizeof(*flow));
if (free_head) {
/* Add slot to current free cluster */
ASSERT(idx == FLOW_IDX(free_head) + free_head->n);
free_head->n++;
flow->free.n = flow->free.next = 0;
} else {
/* Create new free cluster */
free_head = &flow->free;
free_head->n = 1;
*last_next = idx;
last_next = &free_head->next;
}
} else {
free_head = NULL;
}
}
*last_next = FLOW_MAX;
}
/**
* flow_init() - Initialise flow related data structures
*/
void flow_init(void)
{
unsigned b;
/* Initial state is a single free cluster containing the whole table */
flowtab[0].free.n = FLOW_MAX;
flowtab[0].free.next = FLOW_MAX;
for (b = 0; b < FLOW_HASH_SIZE; b++)
flow_hashtab[b] = FLOW_SIDX_NONE;
}