passt/flow.c
David Gibson 7a832a8a0e flow: Properly type callbacks to protocol specific handlers
The flow dispatches deferred and timer handling for flows centrally, but
needs to call into protocol specific code for the handling of individual
flows.  Currently this passes a general union flow *.  It makes more sense
to pass the specific relevant flow type structure.  That brings the check
on the flow type adjacent to casting to the union variant which it tags.

Arguably, this is a slight abstraction violation since it involves the
generic flow code using protocol specific types.  It's already calling into
protocol specific functions, so I don't think this really makes any
difference.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-05-22 23:20:52 +02:00

343 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright Red Hat
* Author: David Gibson <david@gibson.dropbear.id.au>
*
* Tracking for logical "flows" of packets.
*/
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include "util.h"
#include "ip.h"
#include "passt.h"
#include "siphash.h"
#include "inany.h"
#include "flow.h"
#include "flow_table.h"
const char *flow_type_str[] = {
[FLOW_TYPE_NONE] = "<none>",
[FLOW_TCP] = "TCP connection",
[FLOW_TCP_SPLICE] = "TCP connection (spliced)",
[FLOW_PING4] = "ICMP ping sequence",
[FLOW_PING6] = "ICMPv6 ping sequence",
};
static_assert(ARRAY_SIZE(flow_type_str) == FLOW_NUM_TYPES,
"flow_type_str[] doesn't match enum flow_type");
const uint8_t flow_proto[] = {
[FLOW_TCP] = IPPROTO_TCP,
[FLOW_TCP_SPLICE] = IPPROTO_TCP,
[FLOW_PING4] = IPPROTO_ICMP,
[FLOW_PING6] = IPPROTO_ICMPV6,
};
static_assert(ARRAY_SIZE(flow_proto) == FLOW_NUM_TYPES,
"flow_proto[] doesn't match enum flow_type");
/* Global Flow Table */
/**
* DOC: Theory of Operation - flow entry life cycle
*
* An individual flow table entry moves through these logical states, usually in
* this order.
*
* FREE - Part of the general pool of free flow table entries
* Operations:
* - flow_alloc() finds an entry and moves it to ALLOC state
*
* ALLOC - A tentatively allocated entry
* Operations:
* - flow_alloc_cancel() returns the entry to FREE state
* - FLOW_START() set the entry's type and moves to START state
* Caveats:
* - It's not safe to write fields in the flow entry
* - It's not safe to allocate further entries with flow_alloc()
* - It's not safe to return to the main epoll loop (use FLOW_START()
* to move to START state before doing so)
* - It's not safe to use flow_*() logging functions
*
* START - An entry being prepared by flow type specific code
* Operations:
* - Flow type specific fields may be accessed
* - flow_*() logging functions
* - flow_alloc_cancel() returns the entry to FREE state
* Caveats:
* - Returning to the main epoll loop or allocating another entry
* with flow_alloc() implicitly moves the entry to ACTIVE state.
*
* ACTIVE - An active flow entry managed by flow type specific code
* Operations:
* - Flow type specific fields may be accessed
* - flow_*() logging functions
* - Flow may be expired by returning 'true' from flow type specific
* deferred or timer handler. This will return it to FREE state.
* Caveats:
* - It's not safe to call flow_alloc_cancel()
*/
/**
* DOC: Theory of Operation - allocating and freeing flow entries
*
* Flows are entries in flowtab[]. We need to routinely scan the whole table to
* perform deferred bookkeeping tasks on active entries, and sparse empty slots
* waste time and worsen data locality. But, keeping the table fully compact by
* moving entries on deletion is fiddly: it requires updating hash tables, and
* the epoll references to flows. Instead, we implement the compromise described
* below.
*
* Free clusters
* A "free cluster" is a contiguous set of unused (FLOW_TYPE_NONE) entries in
* flowtab[]. The first entry in each cluster contains metadata ('free'
* field in union flow), specifically the number of entries in the cluster
* (free.n), and the index of the next free cluster (free.next). The entries
* in the cluster other than the first should have n == next == 0.
*
* Free cluster list
* flow_first_free gives the index of the first (lowest index) free cluster.
* Each free cluster has the index of the next free cluster, or MAX_FLOW if
* it is the last free cluster. Together these form a linked list of free
* clusters, in strictly increasing order of index.
*
* Allocating
* We always allocate a new flow into the lowest available index, i.e. the
* first entry of the first free cluster, that is, at index flow_first_free.
* We update flow_first_free and the free cluster to maintain the invariants
* above (so the free cluster list is still in strictly increasing order).
*
* Freeing
* It's not possible to maintain the invariants above if we allow freeing of
* any entry at any time. So we only allow freeing in two cases.
*
* 1) flow_alloc_cancel() will free the most recent allocation. We can
* maintain the invariants because we know that allocation was made in the
* lowest available slot, and so will become the lowest index free slot again
* after cancellation.
*
* 2) Flows can be freed by returning true from the flow type specific
* deferred or timer function. These are called from flow_defer_handler()
* which is already scanning the whole table in index order. We can use that
* to rebuild the free cluster list correctly, either merging them into
* existing free clusters or creating new free clusters in the list for them.
*
* Scanning the table
* Theoretically, scanning the table requires FLOW_MAX iterations. However,
* when we encounter the start of a free cluster, we can immediately skip
* past it, meaning that in practice we only need (number of active
* connections) + (number of free clusters) iterations.
*/
unsigned flow_first_free;
union flow flowtab[FLOW_MAX];
/* Last time the flow timers ran */
static struct timespec flow_timer_run;
/** flow_log_ - Log flow-related message
* @f: flow the message is related to
* @pri: Log priority
* @fmt: Format string
* @...: printf-arguments
*/
void flow_log_(const struct flow_common *f, int pri, const char *fmt, ...)
{
char msg[BUFSIZ];
va_list args;
va_start(args, fmt);
(void)vsnprintf(msg, sizeof(msg), fmt, args);
va_end(args);
logmsg(pri, "Flow %u (%s): %s", flow_idx(f), FLOW_TYPE(f), msg);
}
/**
* flow_start() - Set flow type for new flow and log
* @flow: Flow to set type for
* @type: Type for new flow
* @iniside: Which side initiated the new flow
*
* Return: @flow
*
* Should be called before setting any flow type specific fields in the flow
* table entry.
*/
union flow *flow_start(union flow *flow, enum flow_type type,
unsigned iniside)
{
(void)iniside;
flow->f.type = type;
flow_dbg(flow, "START %s", flow_type_str[flow->f.type]);
return flow;
}
/**
* flow_end() - Clear flow type for finished flow and log
* @flow: Flow to clear
*/
static void flow_end(union flow *flow)
{
if (flow->f.type == FLOW_TYPE_NONE)
return; /* Nothing to do */
flow_dbg(flow, "END %s", flow_type_str[flow->f.type]);
flow->f.type = FLOW_TYPE_NONE;
}
/**
* flow_alloc() - Allocate a new flow
*
* Return: pointer to an unused flow entry, or NULL if the table is full
*/
union flow *flow_alloc(void)
{
union flow *flow = &flowtab[flow_first_free];
if (flow_first_free >= FLOW_MAX)
return NULL;
ASSERT(flow->f.type == FLOW_TYPE_NONE);
ASSERT(flow->free.n >= 1);
ASSERT(flow_first_free + flow->free.n <= FLOW_MAX);
if (flow->free.n > 1) {
union flow *next;
/* Use one entry from the cluster */
ASSERT(flow_first_free <= FLOW_MAX - 2);
next = &flowtab[++flow_first_free];
ASSERT(FLOW_IDX(next) < FLOW_MAX);
ASSERT(next->f.type == FLOW_TYPE_NONE);
ASSERT(next->free.n == 0);
next->free.n = flow->free.n - 1;
next->free.next = flow->free.next;
} else {
/* Use the entire cluster */
flow_first_free = flow->free.next;
}
memset(flow, 0, sizeof(*flow));
return flow;
}
/**
* flow_alloc_cancel() - Free a newly allocated flow
* @flow: Flow to deallocate
*
* @flow must be the last flow allocated by flow_alloc()
*/
void flow_alloc_cancel(union flow *flow)
{
ASSERT(flow_first_free > FLOW_IDX(flow));
flow_end(flow);
/* Put it back in a length 1 free cluster, don't attempt to fully
* reverse flow_alloc()s steps. This will get folded together the next
* time flow_defer_handler runs anyway() */
flow->free.n = 1;
flow->free.next = flow_first_free;
flow_first_free = FLOW_IDX(flow);
}
/**
* flow_defer_handler() - Handler for per-flow deferred and timed tasks
* @c: Execution context
* @now: Current timestamp
*/
void flow_defer_handler(const struct ctx *c, const struct timespec *now)
{
struct flow_free_cluster *free_head = NULL;
unsigned *last_next = &flow_first_free;
bool timer = false;
unsigned idx;
if (timespec_diff_ms(now, &flow_timer_run) >= FLOW_TIMER_INTERVAL) {
timer = true;
flow_timer_run = *now;
}
for (idx = 0; idx < FLOW_MAX; idx++) {
union flow *flow = &flowtab[idx];
bool closed = false;
if (flow->f.type == FLOW_TYPE_NONE) {
unsigned skip = flow->free.n;
/* First entry of a free cluster must have n >= 1 */
ASSERT(skip);
if (free_head) {
/* Merge into preceding free cluster */
free_head->n += flow->free.n;
flow->free.n = flow->free.next = 0;
} else {
/* New free cluster, add to chain */
free_head = &flow->free;
*last_next = idx;
last_next = &free_head->next;
}
/* Skip remaining empty entries */
idx += skip - 1;
continue;
}
switch (flow->f.type) {
case FLOW_TYPE_NONE:
ASSERT(false);
break;
case FLOW_TCP:
closed = tcp_flow_defer(&flow->tcp);
break;
case FLOW_TCP_SPLICE:
closed = tcp_splice_flow_defer(&flow->tcp_splice);
if (!closed && timer)
tcp_splice_timer(c, &flow->tcp_splice);
break;
case FLOW_PING4:
case FLOW_PING6:
if (timer)
closed = icmp_ping_timer(c, &flow->ping, now);
break;
default:
/* Assume other flow types don't need any handling */
;
}
if (closed) {
flow_end(flow);
if (free_head) {
/* Add slot to current free cluster */
ASSERT(idx == FLOW_IDX(free_head) + free_head->n);
free_head->n++;
flow->free.n = flow->free.next = 0;
} else {
/* Create new free cluster */
free_head = &flow->free;
free_head->n = 1;
*last_next = idx;
last_next = &free_head->next;
}
} else {
free_head = NULL;
}
}
*last_next = FLOW_MAX;
}
/**
* flow_init() - Initialise flow related data structures
*/
void flow_init(void)
{
/* Initial state is a single free cluster containing the whole table */
flowtab[0].free.n = FLOW_MAX;
flowtab[0].free.next = FLOW_MAX;
}